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OVERVIEW 
 

This document is intended for used with 1D Elements© Finite Element Analysis Program by 
Structural FEA, LLC and ESP Composites, LLC. It provides basic information for 1-dimesional 
elements (rods, beams, and springs) that are used in 2D space. 
 
 

1D ELEMENT ADVANTAGES OVER 2D AND 3D ELEMENTS 
 

1D finite elements (beams, rods, springs, etc.) have some advantages over 2D (shell) and 
3D (solid) elements. 
 
1. REQUIRED OUTPUTS: For rods, the axial load is the output. For beams, the axial load, 
shear load, and moment are the outputs. These outputs can directly be used for classical 
checks such as Johnson-Euler columns, local buckling, crippling, and plastic bending. 
 
Trying to capture the actual behavior of the checks mentioned above via 2D/3D elements 
can be complex and time consuming (may also require nonlinear geometry/material 
analysis). For example, crippling is a phenomenon that is nonlinear in geometry and 
material. This approach is not usually practical for engineering solutions. Alternatively, if a 
classical analysis is to be used, a cross section’s axial load, shear load, and moment can be 
extracted from 2D/3D models. For example, MSC Patran has a “Free Body” tool that can be 
used to determine the cross sections forces/moments for a given cut on a 2D/3D body. 
However, this requires additional processing. Also, many post-processors do not have this 
capability. 
 
For many models, the practical solution is to use a 1D element when possible. The required 
outputs are in a usable manner; there is no “extra” information that may require further 
processing before performing classical analysis. 
 
 

Basic Finite Elements — Version 2.0 
Structural FEA, LLC and ESP Composites, LLC  1 of 28 



2. SECTION CHANGES: Another advantage of a 1D element is the direct ability to easily 
change section properties; for a beam element the area and moment of inertia can be 
modified with simple numeric input changes. However, for a 2D/3D model, the physical 
geometry may need to be changed (and the underlying mesh) to change the cross sections 
properties. These changes can be time consuming. 
 
3. BOUNDARY CONDITIONS: Applying proper boundary conditions to 2D/3D models can 
sometimes be a challenge: 
 

 may be time consuming for some models 
 prone to error for less experienced users 
 Poisson effects must be considered 
 models can easily be overconstrained 
 more difficult to check by other parties 
 creating connections between structural members may not be intuitive; for 

example, see the “PIN FLAGS” section of this manual 
 localized “punch” loads or “punch” constraints must be considered as they can affect 

the stiffness of the model and cause stress concentrations 
 
4. SOLVE TIME: The solve time for 1D elements is faster than for 2D/3D elements. 
 
 

ROD ELEMENT 
 

A rod element is a 1D line element that is connected by 2 nodes. In 2D space, a rod 
element has 2 DOF (degrees of freedom) at each node (two translation DOF). A rod element 
is a two-force member and only has an axial load. 
 
A rod element can not carry a moment. Therefore, it can not carry a load transverse 
(normal) to its axis. It can only carry an axial load that is in-line with its axis and has an 
equal and opposite load at each node. A rod element can thought of as a structural 
member with a pinned joint (spherical joint) at each node. 
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The inputs for a rod element are: 
 2 nodes with X,Y,Z positions (or just X,Y in 2D space) 
 connectivity (defines the 2 node nodes) 
 area of the rod’s cross section 
 elastic modulus in the axis of the rod 
 
The outputs for a rod element are: 
 force (either tension or compression) in-line with the element’s axis 
 
Truss structures are often modeled as rod elements if the joints are assumed to be pinned. 
Note that even if the joint is not actually pinned, the moment at the joint is usually “small” 
for a “well-built” truss structure. An example of a truss structure with rod elements is 
shown in Figure 1. 
 

 
Figure 1 
 
Note that a structural member represented by a rod element should not be discretized 
(refining of the mesh). For example, on the right side of the truss in Figure 2, there are two 
rod elements that make up the structural member. Since the element can not carry a 
moment, this will can an undesirable result. 
 

 
Figure 2 
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If only the overall deformation of the structure and the axial loads in each member are 
sought, then the mode in Figure 1 is sufficient. However, what happens if the Eigen solution 
buckling or natural frequency of each member is sought? In that case, the members must 
have a refined mesh. 
 
As previously discussed, Figure 2 is not a valid model and will not achieve the desired 
result. Instead, the members of interest must be beam elements. With a sufficient amount 
of beam elements for the member of interest, the desired mode shape can be obtained. 
However, this presents another problem. Beams are, by default, “welded” at the joint. If 
that is not the intent of the model, this must be addressed. Two ways are presented in the 
section for beam elements.  
 
 

ROD ELEMENT – EXAMPLE USES 
 

 truss structures 
 mechanically fastened joints (load share analysis) 

 
 

BEAM ELEMENT - GENERAL 
 

A beam element is a 1D line element that is connected by 2 nodes. In 2D space, a beam 
element has 3 DOF (degrees of freedom) at each node (two translation and one rotation). 
 
A beam element can carry a moment. Therefore, it can also carry a load transverse 
(normal) to its axis. By default, beams that are connected to each other are “welded” to 
each other. Because the connection is “continuous” (carries axial, shear, moment), a 
structural member to be divided into many beam elements without causing rigid body 
motion. 
 
The basic inputs for a beam element in 2D space are: 
 2 nodes with X,Y positions  

connectivity (defines the 2 node nodes) 
 area of the beam’s cross section 
 second moment of inertia corresponding to a moment about the Z-axis  
 elastic modulus in the axis of the beam 
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Additional inputs for a beam element in 2D space are as follows. These options may or may 
not be present for a given solver, but are supported in the 1D Elements program, MYSTRAN, 
and NASTRAN: 
 shear deformation coefficient  

pin flags 
 
The outputs for a beam element are: 
 axial load 
 shear force 
 moment 
 
 

BEAM ELEMENT – DISCRETIZATION – GENERAL 
 

This section discusses discretization, which is the act of subdividing a structural member 
into various numbers of elements (from 1 to many elements). The required number of 
elements is a function of the type of analysis being performed. For this section, the loads 
(axial, shear) and moment outputs for beam elements are discussed. 
 
Not all finite element solvers have the same approach for beam element output. For 
example, some solvers provide the moment at the integration point, which may not be at 
the ends of the beam element; ABAQUS is one such solver and for the first order beam 
element there is only one moment output per beam element. Loads and boundary 
conditions can only be applied at the nodes and these locations are often of interest 
(usually where the max/min shear and moment values are). In order to determine an 
accurate result, many beam elements are required to approximate the results at the end 
positions. 
 
Alternatively, some finite element solvers provide the moment at both ends of the beam. 
This is convenient because those are often the locations of interest. Both MYSTRAN and 
NASTRAN provide the moment at each of the beam (both nodes); 1D Elements provides 
these results. Therefore, only a minimum number of beam elements are required. 
However, the actual number of required elements is a function of the type of analysis 
required (as discussed next). 
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Some FEA programs “internally” subdivide the elements created by the user. For example, if 
the user creates a single beam element, the program may create/solve many more (i.e. 10 
elements) in the “background”. This is convenient since it can avoid some discretization 
issues. Distributed loads can also be applied using this approach. 1D Elements does not 
currently support internal subdivision of the elements. 
 
 

BEAM ELEMENT – DISCRETIZATION – LOADS AND MOMENTS 
 

To determine the loads (axial and shear) and the moments for beam elements, a node 
only needs to exist at the location of a load application or boundary condition (provided the 
solver outputs the moments at each node as discussed in the prior section). Additional 
node/elements are not required. Consider the model shown in Figure 3. 

 
Figure 3 

 
The deformed shape (magnitude is arbitrary) is shown in Figure 4. While the deformed 
shape is not very representative of the actual shape, the model accurately determines the 
shear and moment values along the entire span (See Figure 5). 

 
 

 
Figure 4 
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Figure 5 

 
For comparison, a refined mesh is shown in Figure 6. While the deformed shape is more 
representative of the actual deformed shape, the shear and moment diagrams are 
identical (See Figure 7). 
 

 
Figure 6 
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Figure 7 

 
As another example, consider the case the scenario shown in Figure 8. Node 3 (X=20.0) has 
a rotational constraint (no rotation). Therefore, a step in the moment is expected at this 
node. A step in the moment would also occur if there were an applied moment at a 
location other than the far left/right ends. The resulting shear and moment diagrams are 
shown in Figure 9. 

 

 
Figure 8 
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Figure 9 

 
If the structural member is divided into many more beam elements, the result is shown in 
Figure 10. The shear and moment curves are the same as for Figure 9. 
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Figure 10 

 
 

BEAM ELEMENT – DISCRETIZATION – 
DEFLECTION/BUCKLING/NATURAL FREQUENCY/ACCELERATION 
 

In the previous section, it was shown that nodes only need to exist at the loads/boundary 
conditions if the shear loads/moments are the required outputs. However, if an accurate 
deflected shape is desired, “many” elements are required. For example, Figure 4 does not 
capture the beam’s curvature, but Figure 6 more accurately represents the actual 
deformed shape.  
 

Basic Finite Elements — Version 2.0 
Structural FEA, LLC and ESP Composites, LLC  10 of 28 



If an Eigen solution (buckling or a natural frequency) is desired, an accurate 
representation of the deformed shape must be captured. “Many” elements are 
required to accomplish this. The exact number of required elements to reach convergence 
is not known ahead of time. However, provided the deformed shape is accurately captured, 
then the solution is expected to be accurate. 
 
If acceleration/gravity is applied to the model, there may need to be “many” elements since 
this type of loading is effectively a distributed load. To ensure the distribution is 
“reasonable”, there may need to be “many” elements along a span. 
 
 

BEAM ELEMENT – SHEAR DEFORMATION 
 

A beam element has two components for deformation: bending and shear (transverse 
shear). For long beams, the bending deformation dominates the total deformation and the 
shear deformation is minor. However, for short beams, the shear deformation can be 
significant. Also, if a sandwich structure beam (with a soft core) is represented, the 
transverse shear deformation can be significant even if the beam is not “short”. 
 
The shear deformation is represented by K*V*L/(A*G), where K is the shear coefficient, A is 
the cross section’s area, V is the internal shear load in the beam element, G is the shear 
modulus, and L is the length of the beam. 
 
For MYSTRAN, if K is not defined, then the shear stiffness is assumed to be infinite and 
there is no transverse shear deformation. 
 
For NASTRAN, if K is not defined, then the shear stiffness is assumed to be 1.0. If K is 
defined to be 0.0, the shear stiffness is infinite and there is no transverse shear 
deformation. 
 
 

BEAM ELEMENT – PIN FLAGS 
 

Some solvers support “pin flags”. A pin flag allows a DOF(s) to be released at either end of 
the beam element. For example, if all of the rotational DOF(s) are released on both ends of 
the beam, the beam effectively becomes a rod element.  
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Pin flags can be useful in cases where beam-like behavior is desired for a structural 
element, but the ends are intended to be pinned. For example, if buckling or natural 
frequency of a truss structures is desired, many elements should exists between the joints 
(joints are assumed to be pinned joints). However, as discussed in the “ROD ELEMENT” 
section, these elements must be beam elements to prevent rigid body motion. If pin flags 
are not used, the joint connections will be “welded”. If a pin flag for rotation is used at the 
joint, the rotation is released. This model will then have the intended behavior. 
 
For example, consider Figure 11. Two point loads are applied in the downward direction 
(two red dots). On the left side, the beam elements are connected “normally”, without pin 
flags. Therefore, the moment is transmitted through the top corners, causing the vertical 
beam elements to bend. On the right side, the rotational DOF is released at each corner via 
pin flags. Therefore, the vertical members are on in compression (no bending). 
 

      
Figure 11 
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BEAM ELEMENT – EXAMPLE USES 
 

Compared to rods and springs, beam elements are the most flexible, having 3 DOF in 2D 
space. These DOF can also be released (may be different at each end of the beam) via pin 
flags. Some example uses are: 
 

 truss structures 
 rings 
 frames 
 brackets 
 clips 
 arch 

 
It is also possible to model shear joints with beam elements (beam elements can either 
represent mechanical fasteners or a bondline). Spring elements can also represent 
mechanical fasteners or a bondline, but can not capture the eccentricity effect. If beam 
elements are used, the tension load in a fastener or peel stress in a bondline can be 
determined because the eccentricity effect is recognized. In order to use beam elements, 
the load-displacement relationship of the beam must be equated to the fastener flexibility 
or the bondline stiffness. 
 
 

SPRING ELEMENT 
 

A spring element is a true “line” element, but it usually shown as a line in a pre/post 
processor. A spring element simply connects two nodes together via a given stiffness and 
direction.  
 
 

SPRING ELEMENT – SPECIAL CONNECTION 
 

Some solvers do not have pin flags (See the “PIN FLAGS” section of this manual). In 
substitute of pin flags, spring elements can be used. This is accomplished by connecting the 
two nodes (one end of beam A and one end of beam B) together via a spring elements. The 
spring elements are the DOF that are to “connected” and have a large stiffness. 
 
For example, consider two beam elements in 2D space are intended to be connected with a 
pinned joint. First, the two beam elements are not directly connected. Next, two spring 
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elements (with zero length) are used (DOF 1 and DOF 2 corresponding to X and Y). The 
stiffness values are large. After the model is run, verify that the two nodes of the beam 
have the same displacement, but that the joint is free to rotate (since a spring element for a 
rotation was not used). 
 
 

SPRING ELEMENT – EXAMPLE USES 
 

 mechanically fastened joints 
 bonded joints 
 elastic foundation 
 special connections 

 
 

POINT MASS (CONCENTRATED MASS) 
 

A point mass (concentrated mass) can be used in a model. If so, then the natural frequency 
will be affected. Also, if an acceleration/gravity is applied to the model, it will act on a point 
mass (as well as the mass of an element). 
 
For a natural frequency analysis, the point mass must have consistent units (see the 
various sections on units in this document). If acceleration/gravity is applied, consistent 
units may not be required, but are recommended (see the ACCELERATION AND GRAVITY 
section for more information). 
 
 

TEMPERATURE DELTA AND LOADS 
 

A temperature delta may be applied to elements. The amount of expansion/contraction is a 
function of the CTE (coefficient of thermal expansion) of the elements (where applicable). If 
the element can not deform “freely” (and is restrained in some way from deforming 
“freely”), there will be a resulting “thermal load”. For example, if a rod is constrained at both 
ends and a temperature delta is applied, an internal load exists (thermal load) to prevent 
the expansion. 
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ENFORCED DISPLACEMENT 
 

At a node, an enforced displacement may be applied (as opposed to a displacement of 0.0). 
This can be applied for any DOF for the node (3 translations and 3 rotations). 
 
 

RIGID BODY MOTION 
 

Valid models do not exhibit rigid body motion (RBM). Rigid body motion is a condition 
where a very small force causes a theoretically infinite deflection because there is no 
resistance to the motion.  
 
In 2D space, rigid body motion should be prevented in the X-direction translation, Y-
direction translation, and rotation about the Z-axis. At a minimum, at least one node in the 
model must have a X-direction constraint (or enforced displacement), and at least one 
node in the model must have a Y-direction constraint (or enforced displacement). The Z-
axis rotation may be prevented by constraining at least one node in the Z-axis or 
constraining multiple nodes in the translation directions such that Z-axis RBM is prevented. 
 
 

NONLINEAR GEOMETRY 
 

There are various types of nonlinearities supported by FEA programs, such as nonlinear 
geometry, nonlinear materials, and contact. 
 
Nonlinear geometry occurs when the actual deformation affects the result as the 
load/displacement continually increases. 
 
An example of nonlinear geometry is nonlinear buckling (general nonlinear buckling also 
includes the effect of material nonlinearity). If a compressive load is applied to column (and 
there is also a perturbation load such as a side load), these loads will cause bending. When 
the loads are small, the bending is small. However, as the load increases, the deformation 
associated with bending increases. In turn the eccentricity of the compressive load 
increases the bending, and so on. Nonlinear geometry is required to continually update the 
bending deformation and associated eccentricity. 
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Analogous to nonlinear buckling is a beam-column. A beam-column has both bending 
loads and compressive loads (along the beam’s axis). As the compressive load increases, 
the bending deformation increases and so does the eccentricity. A nonlinear geometry 
analysis is required to capture this effect. 
 
In the reverse manner, a phenomenon known as “stress stiffening” may occur. An example 
is the membrane of a drum. If a normal load is applied to the membrane, it becomes more 
and more difficult to increase the deformation (the load-displacement relationship is not 
linear). 
 
 

EIGEN SOLUTION BUCKLING 
 

An Eigen solution can determine the Eigenvalue and Eigenvector for buckling. The load that 
Eigen solution buckling occurs is the applied load in the FEM multiplied by the Eigenvalue. 
The Eigenvector is the displaced shape for the given mode (mode shape). The magnitude of 
the Eigenvector is arbitrary (the shape itself is the relevant output). 
 
Eigen solution buckling is equivalent to elastic buckling (Euler buckling). It does not address 
the nonlinear effects of material. For example, short (sometimes called intermediate) 
columns exhibit plasticity. These columns are known as “Johnson” columns. The classical 
“Johnson-Euler” buckling solutions (not an aspect of Eigen solution buckling) are used to 
predict the full range of slenderness ratios (and column length) of buckling behavior for a 
column. If the column is short (intermediate), then Eigen solution buckling will over-predict 
the column’s capability. 
 
 

NATURAL FREQUENCY (EIGEN SOLUTION) 
 

A natural frequency analysis is a function of the displacement boundary conditions 
(constraints), the mass of the model, and the stiffness of the model. It is not a function of 
the applied forces/moments, enforced displacements, thermal loads, or 
acceleration/gravity.  
 
The mass is determined by the mass of the elements and any point masses (concentrated 
masses). The mass of the elements is a function of the density. The density must have 
consistent units (see the various sections about units in this document). 
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A natural frequency analysis is an Eigen analysis. An Eigenvalue and an Eigenvector are the 
outputs. The Eigenvalue may have different results (rads/sec, cycles/sec or Hz, etc.). The 
Eigenvector is the mode shape. The magnitude of the Eigenvector is arbitrary (the shape 
itself is the relevant output). 
 
In the event that rigid body motion occurs, and it is not obvious why this occurs, a natural 
frequency solution may be performed. For some programs (depending on the Eigen 
solver), this may display the rigid body modes and help detect the why there is rigid body 
motion (sometimes referred to as a mechanism). For example, for the MYSTRAN solver and 
for MSC Nastran, the Lanczos solver can be used to determine rigid body motion. 
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NATURAL FREQUENCY (FREE MODES) 
 

The natural frequency of an unconstrained structure may sometimes be desired. These are 
the “free modes” but are not rigid body modes. For example, for the figure below, the first 
free mode of the beam is shown in grey. Note that when determining the free modes of 
the structure, the initial modes may be rigid body modes with an Eigenvalue of nearly zero. 
The user must find the first “real mode” by inspection or may use a “shift value” that can 
skip the rigid body modes. 
 
Depending on the analysis program, rigid body motion may not be acceptable for the 
natural frequency analysis. For example, if the Modified Givens solution is used in 
MYSTRAN, free body modes are not directly allowed (however, rigid body modes are 
allowed if the Lanczos solver is used). If the free body modes are not allowed (as for 
Modified Givens), one option is to support the structure on “soft springs”, which are springs 
with a relatively small stiffness value so as to not affect the stiffness of the structure. The 
figure below shows the soft springs in orange as well as the first free body mode. The 
springs are “grounded” in the X and Y directions as shown by the yellow arrows. There are 
initial “rigid body” like modes because the springs are relatively soft. These can be 
bypassed upon visual inspection. 
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UNITS 
 

“General purpose” finite element programs do not specify the units (they are inherently 
“unitless”). Instead, the user must input a set of consistent units. Any set of units is 
possible, provided they are consistent. 
 
Three “base units” and a temperature unit are used for structural FEA problems. For 
example, the IPS system (English units) utilizes the three base units of inches, pounds 
(force), seconds. Therefore, the pressure output psi (lbf per square inch) and a moment 
output is inch-lbf. 
 
If a Length, Force, Time set of units is used, the mass unit is a function of the length, force, 
and time. A Length, Mass, Time set of units is also possible (though less common). In this 
case, the Force unit must be determined as a function of length, mass, and time. 
 
 

UNITS – ENGLISH SYSTEM 
 

When using the IPS system (inches, lbs-force, seconds), the inputs for the density may not 
be clear. For the IPS system (inches, lbs-force, seconds), the mass unit is lbf-s2/in. 
Therefore, if a consistent set of units is used, the density has units of lbf-s2/in4. 
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The consistent density unit is required if a natural frequency or dynamic analysis is 
performed. The equations above demonstrate that for the IPS system, a factor of 386.4 
should be used if the density is in lb/in3 (which is the common). For example, aluminum is 
about 0.10 lb/in3 (or more specifically 0.10 lbm/in3). If IPS (inches, lbs-force, seconds), the 
density should be in units of (lb-force*s2/in4). In summary, the finite element input of 
density of aluminum would be 0.10/386.4 = 2.59E-4. 
 
Also of note is that the sometimes a pound is not designated as lbm or lbf. The reason for 
this is that magnitude is the same both cases, which is shown by the following equations: 
 

 
 
Similarly, if an object weighs 1.0 lbf, it has a mass of 1lbm. The consistent mass input (for 
IPS) is (1.0/386.4)lbf-s2/in. In summary, the finite element mass input (point mass or 
concentrated mass) for an object that weight 1.0 lbf would be (1.0/386.4) = 2.59E-3. 

 
When in doubt, it is recommended to create a simple example model and compare this to 
a classical solution. Also note that if the model is converted to SI units, the natural 
frequency is the same (since the result is in seconds for both cases). 
 
For example test cases, see the Section “Units – Natural Frequency Examples” 
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UNITS – SI SYSTEM 
 

Using an SI unit system is more direct than when using an English system. For example, if 
the base units of (meter, Newton, second) is used, the mass (in kg) has a factor of 1.0 when 
converted to the base units: 
 

 
 
This means that a density of kg/m3 does not require a conversion factor to be consistent.  
 
Similarly, a point mass (concentration mass) in kg does not require a conversion factor. 
However, if the point mass has a known value in force (N), then it should be converted to 
kg via F=ma. For example, a 1N weight has a mass of (1.0/9.81) kg = 0.102kg. The finite 
element input for the point mass is 0.102. 
 
When in doubt, it is recommended to create a simple example model and compare this to 
a classical solution. Also note that if the model is converted to English units, the natural 
frequency is the same (since the result is in seconds for both cases). 
 
For example test cases, see the Section “Units – Natural Frequency Examples” 
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UNITS - NATURAL FREQUENCY EXAMPLES 
 

EXAMPLE 1: STEEL CANTILEVER BEAM WITHOUT A POINT MASS 
For this example, the following table shows the proper inputs for both a given SI system 
(meter-Newton-second) and the IPS (inches, lbs-force, second) system. The focus is  to 
demonstrate the proper units for density. 
 
The notable value is the density input for the IPS system, which requires a conversion of 
386.4 since the value of 0.285 is in lbm/in3 (typically published unit system and 
approximate value for steel). The consistent density is 7.38E-4 lbf-s2/in4. See also the “UNITS 
– ENGLISH SYSTEM” section. 
 
For the SI system, no such conversion is necessary. The density is 7886 kg/m3. See also the 
“UNITS – ENGLISH SYSTEM”. 
 

 
 
The classical solution for the cantilever beam is shown below. The following formulas 
directly correlate to the inputs to the finite element analysis. 
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Note that there are other classical solution forms which use the gravitational constant and 
the weight per unit length (shown below). It is provided for reference and is shown to be 
the same equation as above. 
 

 
 

 
 
For all cases, the resulting natural frequency (in Hz), can be correctly determined if the 
units are correct. The previous example is intended to introduce the reader to potential 
pitfalls when performing natural frequency calculations.  
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EXAMPLE 2: STEEL CANTILEVER BEAM WITH A POINT MASS AT THE END 
For the next example, the same cantilever beam is used, but there is a relatively large mass 
at the end of the cantilever (such that the mass of the beam itself has a minor influence on 
the natural frequency). This is equivalent to a 1DOF system. The focus is to demonstrate 
the proper units for a point mass (concentrated mass). The classical solution is as follows 
(where fn is in Hz): 
 

 
 
For a 30.0 lbf weight at the end (to be applied as a point mass), the FEA I/O is as follows. 
Of note is that the point mass must be in consistent units. For the IPS system, a mass is 
required (not a force), so the input is (30/386.5) = 0.0776 lbf-s2/in. This was previously 
discussed in the “UNITS – ENGLISH SYSTEM” section. 
 
For the SI system, the mass is (133.4N/9.81)kg = 13.60kg. 
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And the classical solution is as follows: 

 
 
As an alternate classical solution, the following formula can be used. The advantage of 
using this formula is that the unit system may be more direct/apparent. This is especially 
true for the IPS system, since the consistent unit (lbf-s2/in) is not a readily apparent to most 
users. 

 
 
The classical solution is: 
 

 
 
When in doubt, it is recommended to perform a simple test model and validate it via 
classical solutions and/or compare two problems with different units. The results from the 
previous examples can be also be used since the natural frequency is a constant, 
regardless of what unit system is used. 
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ACCELERATION AND GRAVITY 
 

An acceleration may be applied to the finite element model. A common applied 
acceleration is gravity. A distributed load may also be simulated by applying an acceleration 
to the model. An acceleration is applied in the direction defined by the acceleration vector 
(it can act in multiple components for an X, Y, Z system).  
 
Acceleration is applied to the mass of the model. The mass consists of the element volume 
multiplied by the density and also the point masses (concentrated masses). The force due 
to acceleration is F=ma. 
 
Note that for static analysis and Eigenvalue buckling problems (as opposed to natural 
frequency solutions), the mass need not have consistent units (though it is recommended to 
do so). Consistent units are discussed in the various sections of this document that begin 
with “UNITS” and are required for a natural frequency analysis. For a static analysis and 
Eigenvalue buckling analysis, F=ma. The correct resulting force can be achieved by multiple 
combinations. In other words, it is possible for two “wrongs” to make a “right”. For example, 
first consider the “correct” approach where consistent units are used. If the IPS system is 
used, the density of aluminum is about 2.59E-04 lbf-s2in4.  An object that weights 1lbf has a 
mass of (1/386.1)lbf-s2/in. The consistent gravitational constant is 386.1 in/s2. Alternatively, 
for a static analysis or Eigenvalue buckling analysis, the finite element inputs could be 0.100 
for the density, 1.0 for the object that weights 1lbf, and 1.0 for the gravitational value (the 
acceleration). For both scenarios, F=ma, which is the end goal. But the user should be 
aware that the “two wrongs” make a “right” approach will not work for a natural frequency 
analysis (consistent units are required for a natural frequency analysis). This is less of a 
concern if SI units are used since using consistent units is implemented in a more direct 
manner. In other words, it is almost always recommended to use consistent units if a SI 
system is used. 
 
When using an acceleration, the mass of the elements is “split” to the nodes (for a lumped 
mass approach, which is not to be confused with a point mass). In other words, the total 
mass of the element is divided (and then effectively applied to) the nodes. 
 
When in doubt, it is recommended to create a simple model and evaluate the resulting 
reaction forces. 
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PLATE-LIKE BEHAVIOR 
 

A beam element is assumed to be long and slender. This is typical for beams and cross 
sections such as an I, C (channel), rod, tube, etc. However, plate-like behavior can be also 
be simulated with beam elements, as shown in the following figure. 
 
If plate-like behavior is simulated, anti-clastic curvature may be resisted (the folds in the 
following figure prevent anti-clastic curvature. Therefore, the actual bending stiffness is up 
to 1/(1-ν2) greater than predicted with classically beam theory, where ν is the Poisson’s 
ratio. The actual increase is stiffness is a function of the plate’s aspect ratio. This 
phenomenon, for both isotropic and composite materials, is further discussed in “Practical 
Analysis of Aircraft Composites”. 
 

 
 
NUMERICAL INPUTS 
 

In general, numerical inputs must be “reasonable”. For example, the area and second 
moments of inertia for a beam element should represent those of a beam element. 
Though seemingly obvious, this may not always be the case. For example, an element (such 
a beam, rod, spring) need not truly represent the actual structural member. Instead, seeing 
as these elements are simply mathematical representations, they may be used to 
represent anything the user intends. Elements may be used in creative manners, but in 
doing so, may run the risk of having “unreasonable” numerical inputs. 
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For a given element type, if the numerical inputs are excessively large (or small) compared 
to the “typical” inputs, there may be numerical roundoff errors. These errors may (or may 
not) be indicated in the solver’s output files; and some solvers are more tolerant/robust 
that others to the range of acceptable inputs. The user should be aware of this 
shortcoming and create models that have “reasonable” inputs. 
 
 

CHECKING MODELS 
 

After a run is complete, the results should always be checked. Some of the considerations 
are: 
 

 Compare the results to classical solutions. Unless the finite element model is an test 
case that directly compared to a classical solution (a “hand” calculation), the results 
will not be identical. However, certain aspects (or portions) of the model may be 
compared to classical solution. Sometimes only an approximate can be made via 
the classical solution. Although approximate, it can serve as a valuable way to 
perform a “sanity check” on the model. 

 Displacements should be viewed. Determine if the boundary conditions and forces 
were applied as intended. Ensure that the general displacement is as expected. 

 Ensure that the applied mechanical loads are balanced with the reactions. However, 
if a temperature delta or enforced displacements are present, the applied 
mechanical loads may not balance with the reactions. 

 View the output file from the solver and observe any warnings, errors, etc. 
 For some models, a convergence study should be considered. This means the model 

should be meshed again with a finer mesh (at least in the areas of interest or areas 
that affect the model). The results between the original mesh and the refined mesh 
should be sufficiently similar, which is indicative of convergence. 

 
 


